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Abstract

Decades of hypothesis-driven and/or first-principles research have been applied
towards the discovery and explanation of the mechanisms that drive climate
phenomena, such as western African Sahel summer rainfall variability. Although
connections between various climate factors have been theorized, not all of the5

key relationships are fully understood. We propose a data-driven approach to
identify candidate players in this climate system, which can help explain underlying
mechanisms and/or even suggest new relationships, to facilitate building a more
comprehensive and predictive model of the modulatory relationships influencing a
climate phenomenon of interest. We applied coupled heterogeneous association rule10

mining (CHARM), Lasso multivariate regression, and Dynamic Bayesian networks to
find relationships within a complex system, and explored means with which to obtain a
consensus result from the application of such varied methodologies. Using this fusion
of approaches, we identified relationships among climate factors that modulate Sahel
rainfall, including well-known associations from prior climate knowledge, as well as15

promising discoveries that invite further research by the climate science community.

1 Introduction

The climate system is inherently complex, due to the existence of non-linear
interactions, or couplings, between its subsystems (e.g., the ocean and the
atmosphere), global scale temperature anomalies (e.g., El Niño-Southern Oscillation),20

and other climate behaviors. Such a system exhibits hierarchical modularity of its
organization and function (Havlin et al., 2012): each constituent subsystem performs a
similar function and does not act in isolation; instead, they interact or cross-talk. The
challenge is to discover the key subsystems and their cross-talk mechanisms; that is,
the positive and negative feedbacks that collectively modulate the dynamic behavior25
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of the system through a sophisticated network of modulatory pathways that ultimately
define the system’s functional response.

For example, the rainfall anomaly in the Sahel region of western Africa, which
is the focus of this study, represents a functional response of the climate system.
Rainfall in the Sahel is dependent on global Sea Surface Temperature (SST) patterns,5

as well as on local climate variability. There is a multitude of complex associations
between various subsystems that drive the Sahel’s climate response mechanisms.
Some of these associations have been discovered throughout more than two decades
of hypothesis-driven and/or first-principles based research. For example, a well-
documented modulatory pathway captures the cold phase of the Mediterranean Sea10

(MSEA) and the warm phase of the Atlantic El Niño-Southern Oscillation (EATL)
being associated with rainfall deficiencies over the Sahel (Rowell, 2003; Janicot et al.,
1996). Figure 1 illustrates a climate modulatory network, which is a collection of
modulatory pathways, with some mechanisms driving rainfall in the Sahel known to
be directly/indirectly associated, and some not fully understood. Comprehending these15

mechanisms is particularly important due to the influence of rainfall variability in the
region on the occurrence of meningococcal meningitis. When the Sahel is dry (i.e.,
negative rainfall anomaly), the regional conditions favor meningitis epidemics and
vaccination should be planned to prevent the spread of the disease (Tetteh, 2012).

For mechanistic understanding of functional responses such as African Sahel20

rainfall, we posit that a data-driven approach may facilitate the discovery of key players
that might cross-talk by identifying candidate modulatory pathways and/or suggesting
new factors and relationships with the proper characterization of their inductive or
suppressive roles. The goal of our approach is to elucidate the putative modulatory
pathways that suggest cross-talking mechanisms controlling a system’s functional25

response. More specifically, given the key climate drivers and their modulatory
directions on the response, we must infer (a) the putative pathways of modulatory
events (e.g., Pacific ENSO → AMO → Sahel Rainfall in Fig. 1) and (b) the modulatory
signs (e.g., induction vs. suppression, such as a positive anomaly sign of EATL,
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EATLHIGH being related to the negative anomaly sign of Sahel rainfall, RainfallLOW) that
collectively define the network of modulatory pathways for the response. Furthermore,
given that there is a variety of methodologies that can be used to find such modulatory
relationships, we must provide a consensus result that accounts for all evidence of a
given relationship. To the best of our knowledge, this is a novel proposition in the field of5

knowledge discovery in the physical science domain, in general, and climate extremes
(e.g., droughts), in particular. Moreover, this data-driven approach could contribute,
in the long run, to the identification and characterization of more comprehensive and
predictive models of the physical phenomenon under study.

2 Methods10

In our previous work, we proposed an approach for the aforementioned data-driven,
semi-automatic inference of phenomenological physical models based on Lasso
multivariate regression (Pendse et al., 2012). This approach was applied to quantify the
influence of key factors on the Sahel rainfall anomaly through the use of the Expected
Causality Impact (ECI) score. The results obtained enabled the formulation of the North15

Atlantic Oscillation (NAO)-driven hypothesis, among others, which theorizes that the
NAO modulates the drivers of West African climate, the Atlantic Dipole and the EATL,
via the low-level westerly (LLW) jet.

We extended this work by developing coupled heterogeneous association rule
mining (CHARM), which allowed us to mine higher-order couplings of climate20

relationships and to capture the anomaly phases with which each climate factor is
related to each other (e.g., a negative anomaly of LLW may be related to a positive
anomaly of EATL, and the presence of both factors may be associated with a negative
Sahel rainfall anomaly) (Gonzalez et al., 2013) (Sect. 2.1). Such relationships are
not typically captured from modulatory inference frameworks, let alone traditional25

association rule mining (ARM) methodologies.
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Here we propose to extend CHARM by incorporating other existing methodologies,
namely Lasso multivariate regression (Tibshirani, 1994) (Sect. 2.2) and Dynamic
Bayesian Networks (Murphy, 2002) (Sect. 2.3), as complementary approaches to
increase the confidence of the inferred modulatory relationships. Moreover, in order to
obtain a consensus as to which of the relationships identified have the most evidence5

of being present, we treat the results of each methodology as individual pieces of
evidence in an information fusion approach, and combine them into a unified, coherent
result. This unified result can provide us a means with which to increase the confidence
of the relationships identified throughout the different methodologies. This should allow
us to contrast the methodologies by studying how each of their results differ, and to10

correlate these results with known relationships found in literature. Furthermore, this
unified result may also allow the identification of previously-undiscovered relationships
that can be of interest to climate scientists for further study.

2.1 CHARM: Coupled Heterogeneous Association Rule Mining

CHARM is an extension of ARM that enables the discovery of climatologically-15

relevant modulatory pathways from spatio-temporal climate data. The traditional ARM
methodology CHARM is based on is presented in Sect. 2.1.1, and the limitations of
ARM that CHARM aims to address are described in Sect. 2.1.2.

2.1.1 Traditional Association Rule Mining (ARM)

Traditional ARM was pioneered by Agrawal et al. (1993) as a methodology for capturing20

the frequency with which two items are present within transactions in market basket
data. For instance, Fig. 2 presents a set of transactions that indicate whether or not an
item was purchased. ARM takes this information and organizes each transaction as a
combinatorial set of items. For example, Customer2 has one 3-itemset (i.e., itemset with
3 items) {Bread, Diapers, Beer} as its largest possible itemset, and three 2-itemsets:25

{Bread, Diapers}, {Bread, Beer}, {Diapers, Beer}. By studying the frequency with which
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each itemset occurs across transactions, one can potentially conclude that said items
are typically purchased together, and are possibly related. In Fig. 2, we see that {Bread,
Milk} occurs in 60 % of transactions, and thus we can say that if we were to see bread
in a transaction, 60 % of the time we should see milk in that transaction as well. This
measure is known as the support of an association rule.5

The aforementioned relationship can be equally represented as {Bread → Milk} or
{Milk → Bread}, utilizing an arrow to capture that the presence of the antecedent (e.g.,
the items on the left side) implies the consequent (e.g., the items on the right side) will
be present with the given support. However, if we use a metric such as confidence,
which captures the conditional probability of the consequent being present given the10

presence of the antecedent, the direction of the rule carries more weight. For example,
{Bread → Milk} has a confidence of 0.75 (of the four times bread is present, milk
is only present thrice) while {Milk → Bread} has a confidence 1 (bread is present
every time milk is present) (Tan et al., 2006). As such, the metric used to measure
the interestingness of mined rules affects their overall interpretation and should be15

selected carefully (Sect. 2.1.4) (Tan et al., 2001).
ARM is an increasing area of interest for domain sciences, because of the growing

need to mine data to identify the co-occurrence of important events (Agrawal and
Srikant, 1994; Tan et al., 2001). ARM, unlike other methodologies for inference of
phenomenological models, takes into account the latent but vital signals embedded in20

the intermediary pathways associated with the system’s functional response. However,
the application of ARM to spatio-temporal climate data puts forth a series of challenges.
In Sect. 2.1.2, we outline these challenges and describe CHARM as a means to
address them.

2.1.2 Coupling of climate indices25

Due to the complexity of the climate system, building comprehensive models over
climate data is not trivial. Climate data presents a challenge to traditional ARM
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techniques in terms of data dimensionality and structure, given that it can be captured
at various resolutions and time spaces, with varying magnitudes and representations.

The key drivers of a climate system are spatially distributed and active at different
temporal phases in the modulatory network of the system’s functional response. State-
of-the-art mining methodologies are not well-equipped to handle such diversity of5

spatio-temporal misalignments between the system’s features. For example, due to the
transactional nature of the ARM methods, each spatial grid point (specified by latitude,
longitude, and/or altitude) at a given point in time (e.g., month and year) defines a
transaction ID, or a row in the transaction matrix. This requires that all features be
aligned with respect to their transaction IDs, complicating the use of multi-resolution,10

multi-variate, spatio-temporal climate data by these methods. For this reason, we
leverage climate indices, known to be a valid abstraction of the underlying subsystem’s
zonal climate behavior (Hallett et al., 2004), thus significantly reducing the number
of features needed to capture spatial data. However, these are also misaligned as
different subsystems are located in different parts of the globe (see Fig. 3).15

Some climate variables from observations or simulations (e.g., SST) are defined only
over the ocean; yet others (e.g., rainfall) are defined over land. Hence, considering
both features as columns in a transactional matrix is impossible, given that they have
no common grid points. Even if they share some spatial region, they are often still
misaligned due to variation of their grid resolutions. While mathematical methods20

(e.g., interpolation or extrapolation) exist to facilitate data alignment, they introduce
uncertainty and instability, affecting the interpretability of the results (Gonçalves, 2002).
Subsequently, when a new feature is integrated into the study, realignment and the
aforementioned mathematical operations must be performed again.

An ARM-based approach for the discovery of relationships among climate variables25

was proposed by Tan et al. (2001). This approach studies only spatially-aligned
datasets, and affixes climate indices alongside them. However, due to its inherently
grid-based nature, this approach assigns each climate index’s locally observed
anomalies to all grid points. That is, it assumes that the anomaly equally affects
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the entire globe. While such an assumption may hold for some climate drivers, it
can increase the number of false positives due to its inherent amplification bias. For
example, in the representative case shown in Fig. 4, the high anomaly of the SOP index
(SOI-HI) and the low anomaly of the NP index (NP-LOW) would be present in every
itemset for time tk , which complicates understanding the information gained from any5

resulting rules that includes them.
Climate scientists often study climate factors in a coupled manner and relate certain

variables to others. Traditional lagged climate techniques employed for coupled pattern
analysis include singular value decomposition, grid point correlations, among others
(Polo et al., 2008). For example, Principal Component Analysis (PCA) has been10

used to determine the relationship between Indian Ocean Dipole and East African
rainfall (Schreck and Semazzi, 2004; Manatsa et al., 2012). Hence, we adopt a similar
approach by coupling climate indices. We take a quotient of these relationships before
identifying any anomaly, to capture the anomaly in the relationships between these
variables.15

For each climate index λ to be used as a coupling listener, we iterate through all other
climate indices δ as coupling inciters, and calculate their ratio, δ/λ, as a data coupling
that intends to capture the behaviors of the logical sentence “how abundant is δ given
the presence of λ?” An issue in calculating these ratios is the potential emergence of
large values due to the denominator possibly being orders of magnitude smaller than20

the numerator. To handle this, we normalize the resulting data couplings such that they
range between −1 and 1, allowing us to avoid wide-ranging quotients that could affect
the abstraction of anomalous events (Sect. 2.1.3).

We note that each tuple (row in the database) now represents a specific coupling
inciter λ and time, while each column represents a particular coupling listener δ, and25

each cell contains the relevant data coupling value. For ARM, this data must be binned,
after which the resultant dataset cells indicate the presence or absence of anomalies
for each previously calculated coupling, described further in Sect. 2.1.3. We address
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the increase in dimensions this leads to in Sect. 2.2.1, by using only the most prominent
temporal phases in order to reduce the search space.

2.1.3 Identifying anomalous events

Following the norms established by NOAA (2014), we identify anomalies as any set
of values below the 33.33rd percentile or above the 66.67th percentile for any given5

variable. Given that the data was normalized before calculating ratios, we identify the
anomalies using the aforementioned norm, based on the phase-wise groupings. We
take each tuple corresponding to each unique combination of δ and λ, and identify high
anomalies as being those ratios in the upper 66.67th percentile, and low anomalies as
being ratios in the lower 33.33rd percentile.10

Since we are trying to identify the presence or absence of anomalous events, we
divide each column into two separate high and low cases, and assign a binary 1 when
either anomaly occurs, and a 0 otherwise. This results in a very sparse matrix, as no
particular year can fit in both high and low categories, and it is likely the majority of
years have most variables falling into a non-anomalous category.15

Figure 5 represents a particular (i , j )th iteration. In this example, for the coupling of
λi = EATL8 and δj = NAO3, we identify high and low anomalies and assign transaction
IDs that indicate that the cells pertain to the coupling of that year’s data for the listener
(shown in the column header) against the stated inciter. This transaction ID shows
that each row in the matrix consists of the anomaly of the ratios calculated over each20

possible coupling δx/λi , where x indicates that all values in this row were divided by
the same λi .

2.1.4 CHARM pathway significance assessment

As mentioned before, rule interestingness in ARM is estimated using metrics that
quantify the importance of each rule. Selecting which metric to use depends on the25

information to be obtained (Tan et al., 2001). Support and confidence are commonly
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used to measure rule quality, and although there are other possible metrics to measure
interestingness, none is regarded a “catch-all” for high quality rules (Tan et al.,
2001). Such metrics also require predetermined thresholds to cut off rules deemed
“uninteresting”, which reduces the accuracy in retention of significant rules. Hence, we
first prune based on bare-minimum thresholds for support and confidence (the rule5

appearing in a single transaction), and if any given rule needs to be further analyzed
(based on domain knowledge or otherwise), we perform a Monte Carlo simulation to
test against the null hypothesis of observing the rule at random. Thus, we define a
rule to be significant and interesting if it meets the following criteria: p value≤ 0.01,
support≥ 6%, and confidence≥ 75 %.10

This criteria constrains the search space, and trims the result space, pruning
unimportant rules. Once a set of possibly interesting rules is identified, the
computationally more demanding, but embarrasingly parallel, statistical significance
test is applied to further prune insignificant rules. On average, this removed 20–30 %
of the generated rules from the result set.15

2.1.5 Coupling heterogeneity

Data coupling creates a large set of transactions, covering each year studied for
each possible coupling inciter. Rules that only have sufficient support when counted
over multiple inciters would be difficult to interpret, thus we must heterogeneously
generate rules for each coupling inciter separately, as shown in Fig. 6. This allows us to20

identify preferential bias towards a particular coupling inciter, and preserves information
relating to each data coupling individually.

2.1.6 CHARM computational complexity

Finding all frequent itemsets for ARM is an NP-complete problem that when bounding
transaction length, becomes linear with complexity O(r ·n·2l ), where n is the transaction25

count, l is the maximum itemset length, and r is the number of maximal frequent
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itemsets (Zaki, 2000). Rules are generated such that a user-specified minimum
confidence and/or a minimum support is satisfied. Thus, for an itemset of length k,
there are 2k −2 potentially confident rules, making the complexity O(c ·2q), where c
is the number of frequent itemsets, and q is the length of the longest frequent itemset
(Tan et al., 2001; Zaki, 2000).5

CHARM leverages the Apriori algorithm, ensuring only maximal frequent itemsets
are considered for rule generation (Agrawal et al., 1993), while leveraging sequential
ARM to identify such relationships across different temporal instances (Huang et al.,
2008). As mentioned in Sect. 2.1.5, each inciter is studied heterogeneously. Thus, the
method operates in smaller embarrassingly parallel executions.10

2.2 Lasso multivariate regression

Least absolute shrinkage and selection operator (Lasso) multivariate regression is an
approach pioneered by Tibshirani (1994) that takes a set of inputs and an outcome
measurement and fits a linear model, seeking to shrink the regression and sparsify
the predictor feature space. This is achieved by constraining the L1 norm of the β15

parameter vector B = {β1,β2, . . . ,βn}, calculated as in Eq. (1), such that it is no greater
than a given s value to be minimized (Tibshirani, 1994).

L1norm = |B|1 =
n∑

r=1

|βr | (1)

In the context of this study, this process highlights the prominent phases of the20

features (Sect. 2.2.1). It derives the temporal phases of predictors lagged behind a
response of interest, generating predictor coefficients indicating the magnitude and
type of the modulatory relationships with said response (Pendse et al., 2012).

Recent work on inference of modulatory relationships based on Lasso multivariate
regression of temporal and spatio-temporal data includes means to improve upon the25

Lasso methodology. We apply the method proposed by Pendse et al. (2012), given
489

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/479/2014/npgd-1-479-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/479/2014/npgd-1-479-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
1, 479–517, 2014

On the data-driven
inference of

modulatory networks
in climate science

D. L. González II et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

that it incorporates prominent phase detection and significance assessment. Pendse
et al. (2012) presents an approach toward a data-driven, semi-automatic inference of
phenomenological physical models based on the Lasso multivariate regression model
and quantifies the influence of key “players” on the response of interest (e.g., Sahel
rainfall anomaly) through use of the Expected Causality Impact (ECI) score. The work5

presented in Pendse et al. (2012) also proposes methods for search space pruning,
significance estimation and impact analysis that provide quantifiable metrics in terms
of predictors’ contributions to the rainfall variability and their probability of detections
(PODs).

2.2.1 Prominent phase detection10

We employ the methodology suggested by Pendse et al. (2012) to identify the most
prominent phases (i.e., seasons) in the data. For the benefit of reproducibility, we
utilized the supplemental material provided therein (Pendse et al., 2012). The results
obtained by Pendse et al. (2012) were consistent with many well-known modulatory
relationships from prior climate knowledge (Chang et al., 2006; Marshall et al., 2001;15

Sutton et al., 2000). These results complement the existing physical models and may
help climate scientists derive a stronger physical rationale for the response of interest
(e.g., Sahel rainfall variability). Hence, by leveraging these prominent phases (shown
in Table 1), we can focus on features that should have a stronger influence over the
response.20

2.2.2 Lasso pathway significance assessment

To assess pathway significance, we follow the method described in Pendse et al.
(2012). That is, we apply the Monte Carlo method to estimate the statistical significance
of the relationships found between the input features and the response in terms
of the null hypothesis, by iteratively permuting the response and performing Lasso25
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multivariate regression for this permuted data. This method allows us to prune
insignificant edges in the Lasso network, represented by higher p values.

2.2.3 Lasso computational complexity

Given Lasso’s iterative nature in finding appropriate λ and β values, the computational
complexity of Lasso is reliant on the q parameters and n observations provided by5

the source data, as it would need to attain solutions for all subsets Mk ,k ∈ 1, . . . ,m
(Meinshausen, 2007). Hence, the computational complexity of this methodology is
O
(
n ·q ·min{n,q}

)
(Meinshausen, 2007). Furthermore, since all variables must be at

some point evaluated as the Lasso response r ∈ q, this is multiplied by a factor q.
However, the q value that affects the actual Lasso execution would also grow smaller,10

as considerations are made to remove q parameters that temporally cannot modulate
r .

2.3 Dynamic Bayesian networks

DBNs expand upon Hidden Markov Models (HMMs) and Kalman Filter Models (KFMs),
indexing instances of arbitrary variables. DBNs are represented as a structure similar to15

that of Bayesian Networks with the added benefit of incorporating the temporal space
(Dean and Kanazawa, 1989; Murphy, 2002). DBNs are a very popular means with
which to mine and represent modulatory relationships in data, given that the conditional
probability distribution of each node can be estimated independently (Friedman et al.,
1998; Murphy, 2002). The model’s dynamicity is obtained by combining a traditional20

Bayesian network with a temporal Bayesian network that allows for capturing behaviors
of the Bayesian network over the temporal space, and is not to be confused with the
idea that the model changes over time (Murphy, 2002).
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2.3.1 DBN pathway significance assessment

To assess pathway significance, we again apply the Monte Carlo method to estimate
the statistical significance of edges representing modulatory relationships. This affects
the computational complexity of the methodology, as each random combination must
be mined individually. Hence, to somewhat alleviate this matter, we verify only columns5

for which relationships were found by the base method, and omit the features for which
no relationships were found.

2.3.2 DBN computational complexity

Several different implementations of DBN inference exist, each with varying degrees
of complexity. To mine the DBNs for our problem, we leverage the toolkit provided by10

Zou and Feng (2009), built upon the design proposed in Murphy (2002). This toolkit
allows us to infer the network structure of the DBNs in O(T ), where T is the length
of the sequence to be mined, which could be exponentially large depending on the
number of possible feature combinations a sequence could contain (Murphy, 2002).
Given our utilization of the toolkit, we abide by this complexity for our estimation,15

only restricting the execution by disallowing temporally-infeasible edges. In doing so,
we ensure that the directionality of the network is temporally sound and fits proper
modulatory relationships.

2.4 Construction of modulatory networks

Each of the aforementioned methodologies presents results in a different manner,20

affecting the interpretability of the information they provide. Hence, the resulting
relationships between climate factors should be structured such that all possible
modulatory pathways are captured in a comparable context, while preserving the
information given by each method.
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The results provided by DBN capture a network of relationships between climate
factors as a directed, acyclic graph (DAG). Such graph includes a set of vertices
and directed edges, which in the context of this study represent the climate factors
and the relationships between factors, respectively. This structure provides an intuitive
visualization of the behaviors in the system, as each edge represents the existence of5

a relationship between the climate factors it connects. Therefore, we adapt the results
provided by CHARM to a similar structure, by building a network where the edges
represent each possible combination of high/low anomalies, directed from antecedent
to consequent.

However, given that CHARM uses coupled climate indices, we must ensure the the10

networks generated for the three methods can be equally interpreted. Hence, each
Lasso and DBN experiment will also use such coupled data and will also be executed
heterogeneously, as described in Sect. 2.1.5. This allows us to directly use the results
provided by DBN, given that it already adheres to the proper network structure. As
for the results from the Lasso experiments, we generate the network of modulatory15

pathways by drawing a directed edge from vertex A to B when a β coefficient was
found for an execution where B was the response and A was a predictand. Given the
temporal window constraints set upon this problem, we can follow the graph backwards
from our desired response to study all relationships, both direct and indirect.

2.5 Consensus modulatory network inference via information fusion20

To infer a consensus modulatory network for a functional system response, we must
combine the modulatory networks inferred by CHARM, Lasso multivariate regression,
and DBN into a single unified network that captures the consensus of the results. The
field of evolutionary biology has leveraged methods related to information fusion to
combine evidences found for specific gene classifications in collected field data (Bailey25

and Gribskov, 1998; Li et al., 2008). Of the methods in this field, we chose to combine
the resulting p values of each edge for each modulatory inference methodology
by overlaying the resulting graphs from each methodology upon one another, and
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performing Fisher’s combined probability test, shown in Eq. (2)

χ2 = −2
k∑

i=1

loge(pi ) (2)

where pi represents the p value for the i th independent test. This score presents a
large χ2 test statistic when pi values are smaller, suggesting the null hypotheses are5

not true for every test. In contrast, when all the null hypotheses are true, and the pi are
independent, χ2 has a chi-squared distribution with 2k degrees of freedom, where k is
the number of tests being combined. This can then be used to determine the p value
for χ2 (Fisher, 1932).

After obtaining the combined p value, we compute an ARM-inspired support count10

to quantify the amount of methods providing evidence for this result. With this, we
determine which edges are worthwhile of inclusion, opening the realm for climate
scientists to determine which amount of evidence constitutes a satisfiable minimum
for which an edge is acceptable, and additional information can be obtained from
the underlying individual results. For example, if ARM found some AHIGH → BLOW15

relationship between features A and B, Lasso or DBN also found evidence of some
A → B relationship, and we obtain a significant Fisher statistic, we can state that this
relationship is founded, since 3 out of the 6 possible method results have evidence
of such relationship. Furthermore, given the information provided by ARM’s result
highlighting specific phases, domain scientists can investigate the AHIGH → BLOW20

relationship in further detail.

3 Results and discussion

Setting the Sahel rainfall anomaly as the system’s response presents an ideal model for
assessing the climatological relevance of modulatory pathways identified by CHARM.
We evaluate the computational validity of CHARM, using the criteria defined in25
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Sect. 2.1.4, by studying the mined rules for the connections it identifies, and compare
the results to those of the other approaches and study the effect of combining the rules
as described in Sect. 2.5.

3.1 Data

Table 1 presents the data used for this study, which was obtained from the NCEP/NCAR5

(2014), along with rainfall data obtained from the UDel_AirT_Precip dataset provided by
NOAA/OAR/ESRL PSD (2013). Along with these, our study uses new indices created
by climate scientists (items 8–9) using empirical orthogonal function (EOF) techniques
(Wilks, 2006) to isolate the dominant mode(s) in reanalysis data (NOAA PSD, 2014).
The inclusion of the new indices is based on the fundamental knowledge that Sahel10

climate is modulated by different climatic drivers (Hurrell, 1995; Rowell, 2003).
These drivers originate from the ocean, atmosphere, land surface, and vegetation,

where they interact intricately, and ultimately exert a strong influence over the Sahel
region. However, the tropical Pacific, the Atlantic, and the Indian Oceans, as well as
the Mediterranean Sea and the overlying atmosphere are key drivers of Sahel climate,15

so the creation of such indices ensures they are given equal chance to participate
in the experiment, represented in Table 2. Hence, where climate literature suggested
a teleconnection between a climate variable and Sahel rainfall, but a representative
index for it was not available from NCAR, an EOF analysis of the 850 mb height field
was created instead, using reanalysis data. Each mode is represented as feature〈#〉20

(i.e., the first mode of variance over the Mediterranean Sea is referred to as MSEA1).
We select the most prominent seasons for these indices, as described in Sect. 2.2.1,

and utilize eastern Sahel rainfall over the season July-August-September (JAS) as the
desired response. These variable-phase combinations are denoted as feature〈phase〉,
where the subscript corresponds to temporal phases (i.e., 1= Jan-Feb-Mar, 2=Feb-25

Mar-Apr. . . ,12=Dec-Jan-Feb). Thus, we can contrast these to provide a description
of the sub-region’s climate variability in association to this response for the period of
1950–2008.
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3.2 Network interpretations

We will discuss specific use cases of our experiment herein. Images for the generated
networks for each method, their associated DAG matrices and combination metrics can
be obtained via supplemental material1.

3.2.1 Rainfall interconnections5

Table 3 captures the relationships known from reference material in contrast to the
findings of the evaluated methods for the EATL8 coupling inciter. This table serves
to present length of pathway from the variable in question to the expected rainfall
response, so as to verify the findings of this experiment in terms of known relationships
gathered over two decades of research (Tetteh, 2012). The dynamical substance in the10

processes involved and teleconnections in these mining techniques is highlighted.
Lasso reveals that four oceanic modes, the Pacific (represented by MEI, Nino 3.4 and

Nino 4), IOD, MSEA3, and AMO influence the Eastern Sahel rainfall (Rowell, 2003).
The dynamical processes inferred from warm ocean surface anomalies associated with
the IOD (Lu, 2009), MSEA3 (Rowell, 2003) and AMO (Zhang and Delworth, 2006) are15

related to an increase in the magnitude of the main rainfall season in the Sahel. The
IOD and MSEA3 specifically facilitate positive moisture advection whereas the AMO
displaces the Intertropical Convergence Zone (ITCZ) to its climatological position over
the Sahel. These mechanisms are tied to moisture transport from the tropical Atlantic
by LLW2 and LLW3. On the contrary, a warming of the Pacific is generally associated20

with rainfall diminution over the Sahel Janicot et al. (1996).

3.3 Process evaluation

We find that Lasso and CHARM coincide in capturing AMM, the most important
oceanic mode governing decadal climate variability of the Sahel, and which primarily

1http://freescience.org/cs/cni_combined
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determines moisture availability (Grossman and Klotzbach, 2009). The positive
(negative) phase of the AMM is associated with rainfall enhancement (suppression).
However, its role or impact is modulated directly or indirectly by distinct phases of
Nino3, MSEA1 and MSEA2. While warm (cold) phase of Nino3 suppresses (enhances)
moisture flux over the Sahel, MSEA1 and MSEA2 have a competing effect, with positive5

and negative moisture transport over the Mediterranean Sea respectively, and are
involved in negative and positive moisture transport over the Mediterranean Sea. The
model also reveals high (low) phase of LLW1 over the Atlantic is associated with
strengthening (weakening) of westerly moisture flow. This co-occurs with GHT 1, 2,
and 3, which determine troughs and ridges that govern high and low rainfall anomalies.10

Lasso and DBN coincide in capturing extra-tropical NAO forcing, whose precise
impacts of the NAO over northern Africa as a whole have been reported (Hurrell,
1995). On a much finer spatial scale, our model depicts that the Eastern Sahel
rainfall variability indeed responds to the NAO. This piece of evidence is being further
investigated by the authors based on an NAO-driven hypothesis over the entire West15

African Sahel (Tetteh, 2012).
Figure 7 captures the aggregate number of relationships found by each method,

averaged across all coupling inciters studied. We find that per each coupling inciter,
Lasso is the more sensitive methodology, finding edges for most possible feature
combinations. Given the design of our CHARM experiment capturing phase-specific20

relationships (i.e., AHIGH → BLOW), as described in Sect. 2.1.3, we group all possible
high/low combinations to merely visualize how many relationships CHARM found as a
whole. We note that these highly coincide with the findings of Lasso, but find their
share of unique relationships that contribute to the final result. Lastly, we find that
DBN produces very few relationships, but the majority of these contribute to the Fisher25

statistic for the three methods, as 97 % of the found relationships coincide with either
CHARM or LASSO, while 60 % coincides with both. The central area of Fig. 7 would
lead to further study, as it indicates all three methods provided evidence of relationships
in this area.
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Given the intent is to find drivers for the rainfall feature, Fig. 10 captures the average
number of direct relationships to the rainfall response found by each method. This again
highlights the sensitivity of Lasso, as of a maximum 20 features, an average 17.67 were
selected, whilst CHARM and DBN find less such relationships. When evaluating the
coupling inciter EATL8 (see Fig. 9), we see this in further detail, as while Lasso captures5

17 direct relationships to the Rainfall response, CHARM and DBN capture 8 and 1,
respectively. Hence, Lasso appears to detract from discovering indirect relationships,
unless β values are inspected directly. This especially affects the fused network, as
most features are marked as directly associated with the response (see Fig. 8).

3.3.1 Fused network relationships10

Figure 8 captures the resulting network after the different models are fused into a
consensus result, and presents a significant increase in edges from any individual
method, mostly driven by the high sensitivity of the Lasso methodology. The network
metrics captured in Table 4 highlight that AMM has the highest betweenness centrality
in the case of CHARM and the fused network, meaning it is found in all shortest paths15

in the network, marking AMM’s importance in the network, as stated in Sect. 3.2.1.
The clustering coefficient for CHARM and DBN have standard deviations σ = 0.02 and
σ = 0.11, respectively, but σ = 0.01 when fused together, indicating Lasso’s sensitivity
plays a key role in the fused result, as in the individual Lasso graph, most nodes
were hubs for many inbound connections. Furthermore, we find that the fused network20

performed best at creating a cluster with the desired Rainfall response, seemingly best
influenced by the CHARM network, although given Fig. 9, we know the influence of
Lasso again came into play. Hence, exploring a means to limit Lasso’s influence may
be a beneficial next step for future work.
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4 Conclusions

We evaluated three different methods for finding modulatory relationships in spatio-
temporal climate data and validated the results obtained against known relationships
modulating rainfall in the Sahel region of Western Africa. These results show that
each method has its benefits and drawbacks. Noting that significant changes had to5

take place for utilizing CHARM for this purpose given spatial misalignment issues,
we devised data coupling as a means with which to study the relationships in the
underlying data. These changes served to make CHARM an efficient methodology
for addressing the data-driven discovery of predictive, climatologically relevant, and
statistically significant modulatory pathways in the physical model of the Sahel rainfall10

anomaly.
We also evaluated the consensus network obtained after combining the results of

these methods via information fusion. Given our findings regarding Lasso’s sensitivity
to finding relationships at varying beta magnitudes, future work will be directed towards
limiting such sensitivity and/or its influence in the fused network. In any case, this15

study served to validate these methods against known relationships from over two
decades of hypothesis-driven and first-principles research. The IOD, ENSO, MSEA,
and AMO were confirmed as important SST anomalies modulating rainfall in the
region. Relationships which are not fully understood were also highlighted, such as
the interconnected relationship with the NAO and LLWs, as well as the inverse rainfall20

relationship with Pacific ENSO temperatures. These findings invite further research by
domain scientists.

Finally, some of the modulatory relationships identified by these methods may
represent underlying causal pathways in the climate system. Future work will also focus
on inferring these causal pathways by leveraging causal modeling frameworks, such25

as Causal Bayesian Networks. Under this framework, inferring causal relationships
becomes a problem of network structure learning. Several score-based and constraint-
based algorithms have been proposed to this end (Spirtes, 2010). However, due to the
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inherent complexity of the climate system, learning this causal network structure is not
a simple task. Future work should include identifying an appropriate causal inference
algorithm for the problem at hand, by determining which underlying assumptions
must hold to infer causal models for the climate domain. This causal inference
algorithm should not assume causal sufficiency nor acyclicity of the causal structure5

(Hyttinen et al., 2013), since latent variables (i.e., confounders) and feedback loops are
ubiquitous in the climate system. This algorithm should also be able to handle the high-
dimensionality and small sample size of climate data (Bühlmann, 2013). Furthermore,
an algorithm that allows to incorporate prior knowledge (i.e., known causal relationships
from domain knowledge) would also be desirable (Borboudakis et al., 2011).10
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Table 1. Prominent season selections for climate variables.

# Climate Variable Abbrev.c Seasons chosen (Top 3)a,b

1 2 3 4 5 6 7 8 9 10 11 12

1 Nino1+2 Nino12m ⊕ + +
2 Nino3 Nino3m + ⊕ +
3 Nino4 Nino4m + + ⊕
4 Nino3.4 Nino34m ⊕ + +
5 Multivariate ENSO MEIm + ⊕ +

6 North Atlantic Oscillation NAOm + + ⊕
7 Atlantic Multidecadal Oscillation AMOm ⊕ + +
8 Atlantic Meridional Mode AMMm ⊕ + +

9 Lower Level Westerly Jets EOF1 LLW1m ⊕ + +
10 Lower Level Westerly Jets EOF2 LLW2m ⊕ + +
11 Lower Level Westerly Jets EOF3 LLW3m + + ⊕
12 Mediterranean Sea EOF1 MSEA1m ⊕ + +
13 Mediterranean Sea EOF2 MSEA2m ⊕ + +
14 Mediterranean Sea EOF3 MSEA3m + + ⊕
15 850 hPa Geo-potential Height EOF1 GHT1m + ⊕ +
16 850 hPa Geo-potential Height EOF2 GHT2m ⊕ + +
17 850 hPa Geo-potential Height EOF3 GHT3m ⊕ + +

18 Indian Ocean Dipole IODm ⊕ + +

19 Atlantic ENSO EATLm + + ⊕
a The topmost influential season for each variable is marked with a ⊕.
b 1= Jan-Feb-Mar, 2=Feb-Mar-Apr,. . .,12=Dec-Jan-Feb.
c Subscript m represents chosen season (i.e. NAO3: Season 3 chosen for NAO).
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Table 2. Regions for generated indices.

Index Region

IOD 10◦ S–10◦ N, 50◦ E–70◦ E
10◦ S–0◦, 90–110◦ E

LLW (EOF 1,2,3) 0–20◦ N, 60◦ W–25◦ E
MSEA (EOF 1,2,3) 30–46◦ N, 6◦ W–36◦ E
GHT (EOF 1,2,3) 0–40◦ N, 40◦ W–30◦ E
EATL 3◦ S–3◦ N, 30◦ W–0◦
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Table 3. Comparison of Known Relationships of climate features with rainfall response with
mined network proximitya,b,c.

# Climate Variable Abbr. ⇒ Method

CHARM Lasso DBN

1 2 3 1 2 3 1 2 3

1 Atlantic Meridional Mode AMM D X X
2 Atlantic Multidecadal Osc. AMO D X X

3 Atlantic ENSO EATL I

4 Geo-potential Height EOF1 GHT1 D X X
5 Geo-potential Height EOF2 GHT2 D X X X
6 Geo-potential Height EOF3 GHT3 D X X X

7 Indian Ocean Dipole IOD D X X

8 Lower Level W. Jets EOF1 LLW1 D X X
9 Lower Level W. Jets EOF2 LLW2 D X X

10 Lower Level W. Jets EOF3 LLW3 D X X X

11 Mediterranean Sea EOF1 MSEA1 D X X
12 Mediterranean Sea EOF2 MSEA2 D X X X
13 Mediterranean Sea EOF3 MSEA3 D X X

14 Multivariate ENSO MEI I X
15 Niño1+2 Nino12 I X
16 Niño3 Nino3 I X X
17 Niño4 Nino4 I X X X
18 Niño3.4 Nino34 I X X

19 North Atlantic Oscillation NAO I X X X

a ⇒: Known relationship, I: Indirect, D: Direct
b References for known relationships by row: 1: Grossman and Klotzbach (2009), 2: Zhang and Delworth (2006),
3: Zebiak (1993), 4–6: Kidson and Newell (1977), 7: Saji et al. (1999), 8–10: Nicholson (2009), 11–13: Rowell (2003),
14–18: Nicholson (1997), 19: Hurrell (1995).
c Relationships with EOF modes are unknown, but labels apply for actual climate phenomena.
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Table 4. Network vertex statistics for coupling inciter EATL8.

# Var. Method

Betweenness Centrality Clustering Coefficient

CHARM Lasso DBN Fused CHARM Lasso DBN Fused

1 AMM 3.7 0 0 1 0.392 0.405 0 0.448
2 AMO 1.367 7.983 1 0 0.414 0.321 0.167 0.446
3 EATL 0 0 0 0 0 0 0 0
4 GHT1 0 0.374 0 0 0.424 0.374 0 0.445
5 GHT2 0 0.338 0 0 0.392 0.338 0.167 0.448
6 GHT3 0.917 0.583 6.5 0 0.413 0.364 0.143 0.448
7 IOD 0 2.233 0 0 0.442 0.346 0 0.446
8 LLW1 1.7 0 0 0 0.412 0.379 0 0.473
9 LLW2 0.417 4.4 8 0 0.438 0.352 0.133 0.448
10 LLW3 0 0.833 0 0 0.419 0.402 0.2 0.445
11 MSEA1 1.7 0 0 0 0.412 0.4 0.333 0.473
12 MSEA2 1.733 5.4 0.5 0 0.393 0.343 0.333 0.445
13 MSEA3 0.617 0.75 1 0 0.415 0.382 0.167 0.448
14 MEI 0 1.983 0 0 0.482 0.352 0 0.473
15 Nino12 0 0.433 0 0 0.449 0.35 0.167 0.468
16 Nino3 1.7 1 0 0 0.412 0.417 0 0.473
17 Nino4 0.617 0.583 2 0 0.415 0.346 0.167 0.448
18 Nino34 1.367 0.167 4 0 0.414 0.429 0 0.446
19 NAO 0.167 0.25 4 0 0.44 0.433 0 0.445
20 Rainfall 0 0 0 0 0.446 0.338 0 0.46
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Mechanisms not fully understood
Direct/Indirect causality; 
Documented mechanisms w/ confidence

Fig. 1. Complex relationships between climate indices and Sahelian rainfall, with some direct
and indirect relationships well defined in literature (light arrows) and others not fully understood
(dark arrows).
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Fig. 2. Simplistic traditional representation of market basket data in the form of transactions.
The rule Bread → Milk has a support of 0.6, meaning it appears in 60 % of transactions.
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Fig. 3. Climate indices can be distant, or many times partially co-located, complicating spatial
alignment.
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Fig. 4. Spatially-defined variables’ anomaly presence or absence is affixed to climate index
anomalies expanded to represent a global effect.
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Fig. 5. Data coupling for λi = EATL8 and δj = NAO3.
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Fig. 6. Heterogeneous rule sets are generated for each coupling inciter individually, preserving
the independence of their anomalies.
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Fig. 7. Number of relationships found in network, averaged across coupling inciters.
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Fig. 8. Resulting combined network for coupling inciter EATL8.
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Fig. 9. Relationships directly associated with rainfall for λ = EATL8.
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Fig. 10. Number of relationships found directly related to rainfall, averaged across coupling
inciters.
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